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We investigate the spin-dependent transport properties of two-dimensional electron-gas systems formed in
diluted magnetic semiconductors and in the presence of Rashba spin-orbit interaction in the framework of the
scattering matrix approach. We focus on nanostructures consisting of realistic magnetic barriers produced by
the deposition of ferromagnetic strips on heterostructures. We calculate spin-dependent conductance of such
barrier systems and show that the magnetization pattern of the strips, the tunable spin-orbit coupling, and the
enhanced Zeeman splitting have strong effects on the conductance of the structure. We describe how these
effects can be employed in the efficient control of spin polarization via the application of moderate fields.
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I. INTRODUCTION

Spin-orbit coupling in semiconductors intrinsically con-
nects the spin of an electron to its momentum,1 providing a
pathway for electrically initializing and manipulating elec-
tron spins for applications in spintronics2,3 and spin-based
quantum information processing.4 This coupling can be regu-
lated with quantum confinement in semiconductor hetero-
structures through band-structure engineering, as well as by
the application of external electric fields, as in the celebrated
spin field-effect transistor proposed by Datta and Das.5 Using
diluted magnetic semiconductors �DMS� in such systems
provides an additional degree of control of the transport
properties. In particular, when an external magnetic field is
applied, the magnetic dopant spins align, giving rise to a
strong exchange field that acts on the electron spin. This s-d
exchange interaction between the electron spin in the con-
duction band and the localized magnetic ions induces a giant
Zeeman splitting. The effect has been recently explored theo-
retically as a way to enhance the transport response of two-
dimensional electron-gas �2DEG� systems.6

In this paper we investigate the spin-dependent transport
properties of 2DEG systems formed in diluted magnetic
semiconductors and take into account the electric-field-
dependent Rashba spin-orbit interaction �SOI�. We focus our
attention on nanostructures consisting of realistic magnetic
barriers produced by the deposition of ferromagnetic strips
near the heterostructures,7 providing a relatively strong inho-
mogeneous magnetic field on the 2DEG.8 We show how the
conductance of the 2DEG depends strongly on the magneti-
zation pattern of the strips, as well as on geometry and ex-
ternally applied electric fields. We demonstrate that signifi-
cant spin polarization �exceeding 50%� can be obtained at
low temperatures for ferromagnetic strips of typical dimen-
sions and magnetization. We should note that other theoreti-
cal work has explored the spin polarization introduced by
magnetic modulation in different systems,9,10 and especially
the role of spin orbit in two-dimensional systems.11 We dem-
onstrate here that the implementation of magnetic barriers in
DMS electron systems results in enhanced and well-

controlled spin polarization even for shorter barriers, thanks
to the enhanced Zeeman effect in these structures.

II. MODEL AND THEORETICAL APPROACH

Figure 1 illustrates the type of magnetic barrier which can
be created by the deposition of a ferromagnetic strip on the
surface of a heterostructure. In this case the magnetization is
assumed perpendicular to the 2DEG located at a distance z0
below the surface. For this strip of width d and thickness h,
the magnetic field along the ẑ axis is given by7

B = B0�f�x + d/2� − f�x − d/2�� , �1�

where B0=M0h /d, f�x�=2xd / �x2+z0
2�, and M0 is the magne-

tization of the ferromagnetic strip. The in-plane field compo-
nent can be assumed negligible for this configuration.7 We
should mention that deposition of dysprosium strips results
in magnetic fields estimated to be as large as 1 T in the
vicinity of the 2DEG �Ref. 8�; from this we take B0=0.1 T
to be a realistic value.

The Hamiltonian of the 2DEG �in the xy plane� is realized
in the lowest subband of the semiconductor heterostructure
with effective mass m�, and includes the Rashba SOI due to
z confinement, as well as due to applied electric fields via a
gate voltage on the strip, characterized by the coupling con-
stant �z, the Zeeman term with electronic g factor, and the
s-d exchange interaction

H =
1

2m�
��x

2 + �y
2� −

�z

�
��x�y − �y�x� +

g�B�z

2
B�x�

+ jsd�
i

s�r� · S�Ri���r − Ri� , �2�

where �� denotes the kinetic momentum and �� is the Pauli
spin matrices. S is the spin of the localized 3d5 electrons of
Mn2+ ions with S=5 /2 and s is the electron spin in the
2DEG. We assume that the magnetic ions are distributed ho-
mogeneously in the DMS, and that the extended nature of the
electronic wave function spans a large number of magnetic
ions, allowing the use of a molecular-field approximation to
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replace the magnetic-ion spin operator Si with the thermal
and spatial average �Sz� along the external magnetic-field
direction. This approach has been proven suitable in previous
studies.12,13 Correspondingly, the exchange interaction in Eq.
�2� can be written as a Zeeman-type term, Jsd�Sz�sz, where
�Sz�=−�5 /2�BJ�Sg�BB /kB�T+T0��, with BJ�x� as the Bril-
louin function, T0 accounts for the reduced single-ion contri-
bution due to the antiferromagnetic Mn-Mn coupling, and kB
is the Boltzmann constant. The parameters used in the
calculation are chosen for Ga1−xMnxAs, with Jsd=N0jsdx
=−0.22x eV, where N0jsd is the exchange constant per cat-
ion for the material, x=0.014 is the Mn concentration, g
=−0.44, T0=40 K,14,15 and T=1 K. For convenience we ex-
press all quantities in dimensionless units, using �=eB0 /m�,
and magnetic length L0=�� /eB0. In this system m�

=0.067me, which results in L0=81 nm and ��=0.17 meV,
for B0=0.1 T as above.

The two-dimensional Schrödinger equation H	=E	 has
solutions of the form 	�x ,y�=eiqy
�x�, where E is the total
energy of the electron and q is the electron wave vector in
the y direction. 
�x� satisfies

	 d2

dx2 − Ve�x,�z� + �z
�
�x�q + A�x�� − �y�− i

d

dx
��
�x�

= − 2E
�x� , �3�

Ve�x,�z� = �q + A�x��2 + �Jsd
� �Sz� + g�B�x���z, �4�

where �z
�=2�z / �L0���, Jsd

� =2Jsd /��, g�=g�BB0 /��, and
Ve is the effective dynamical potential. We use the Landau

gauge, A� �x�= �0,A�x� ,0�, and B�x�=dA�x� /dx. For the field
configuration we treat here, the effective potential Ve results
in an asymmetric double barrier structure �see bottom panel
in Fig. 1� for different values of q. The bottom of the poten-
tial shifts differently for different spin values, and one of the
barriers becomes larger as q increases so that the overall
transmission is strongly suppressed for large q, as we will
see below. The double barrier structure, as expected, gives
rise to transmission resonances for small q, strongly affecting
the transmission of the structure, as we will demonstrate.

For a magnetic barrier structure as that shown in Fig. 1, it
is difficult to solve Eq. �3� analytically. However, a numeri-
cal approach which divides the region of the barrier �xi ,xf�
into N��1� segments of width L= �xf −xi� /N is possible.9 For
small L �large N� the vector potential in each of the segments
can be treated as constant so that in each jth segment one has
solutions given by 
 j�x��=eikjx��kj�, with spinors

��kj� = ��
1

�
2 � , �5�

where

�
1 =

− �z
��q + A�xj� + ikj�

�2����� − Zj�
,

�
2 =

�� − Zj

�2����� − Zj�
,

Zj = Jsd
� �Sz� + g�B�xj� , �6�

and

�� = � �Zj
2 + ��z

��q + A�xj� + ikj��2�1/2, �7�

where kj is the solution of the equation �kj
2+ �q+A�xj��2

−2E�2=��
2 .

We consider the transmission of electrons with initial
wave vectors k↑ and k↓ corresponding to the region x�xi,
which are the solutions of the problem with Jsd�Sz�=0, and
�z=0 away from the magnetic barrier region. It is clear that
the transmission probabilities for electrons of spin eigen-
states “↑” and “↓” are different due to the SOI, as well as due
to the enhanced and inhomogeneous Zeeman splitting in Eq.
�2�. Since the wave vector in the y direction is fixed, on both
incident and outgoing regions of the magnetic barrier, the
wave function for spin-up incident electrons can be writ-
ten as
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FIG. 1. �Color online� Top diagram illustrates magnetic strip
with perpendicular magnetization over a 2DEG layer. The magne-
tization of the strip results in the magnetic barrier and vector poten-
tial shown in the middle panel. Bottom panel shows effective po-
tential Ve for different q values �Eq. �4��. Rashba SOI is assumed
present only under the strip via an applied gate voltage. Structural
parameters chosen as d=1 and z0=0.1, in units of the magnetic
length L0=�� /eB0=81 nm for B0=0.1 T.
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�x� = eik↑x↑ + r↑↑e−ik↑x↑ + r↓↑e−ik↓x↓, for x � xi,

= t↑↑eik↑x↑ + t↓↑eik↓x↓, for x � xf . �8�

Here t↑↑,↓↑ and r↑↑,↓↑ are the transmission and reflection co-
efficients for the incident spin-up state ↑. Taking into ac-
count the boundary conditions, which require that the wave
function be continuous at the interfaces, a system of linear
equations for all these four coefficients can be derived. We
emphasize that we have utilized extend boundary conditions
to consider the case of an x-dependent SOI,16 as we will
assume in the specific examples below that the magnetic
strip is likewise used as a gate that changes �z locally. Once
t↑↑,↓↑ and r↑↑,↓↑ are known, it is straightforward to obtain the
spin-dependent transmission coefficients Tss��E ,q�, where s�
�s� is the incident �outgoing� spin, with s ,s�=↑ or ↓. Note
that for incident electrons with spin s�=↑ there are two kinds
of transmission coefficients, T↑↑ and T↓↑, as the SOI produces
precession of the electron spin as it propagates. A similar
effect occurs for incident electrons with spin s�=↓, although
the presence of the magnetic field breaks time-reversal in-
variance, which results in a spin-filtering effect, as we will
see below.

In the ballistic regime the spin-dependent conductance
can be calculated from the Landauer-Büttiker formula,7

Gss��T� = �
0

�

gss��E��−
� f�E,T�

�T
�dE , �9�

where

gss��T� = G0�
−�/2

�/2

Tss��E,�2E sin����cos���d� , �10�

� is the angle of incidence with respect to the x direction �see
top panel of Fig. 1�, f�E ,T� is the Fermi-Dirac distribution
function, and G0=e2m�vFLy /h2, where Ly is the length of the
structure in the y direction and vF=�kF /m� is the Fermi ve-
locity.

To evaluate the electron spin polarization effect in the
tunneling process, we define the net conductance polariza-
tion as

P =
G↑↑ + G↑↓ − G↓↑ − G↓↓

G↑↑ + G↑↓ + G↓↑ + G↓↓
. �11�

III. RESULTS AND DISCUSSION

In Fig. 2 we show typical transmission coefficients, as
functions of incident energy and angle �q=�2E sin ��, for an
incoming electron with spin ↑. The upper panel shows the
transmission coefficient for collected electrons with the same
polarization, T↑↑, while the lower is for outgoing electrons
with opposite spins, T↓↑. Here we use a typical SOI strength,
�z=0.35�10−11 eV m,17 which corresponds to �z

�=0.5. No-
tice that for low incident energy and/or with a large incident
angle � the transmission coefficients are very small, as the
effective barrier presented by the magnetic strip is quite large
�see bottom panel of Fig. 1�. At lower incident angle and
higher energy, the transmission exhibits a series of reso-

nances near normal incidence ���0�, as the magnetic vector
potential results in an effective scattering double barrier po-
tential �Ve�A2�x� in Eq. �4�� with concomitant resonances.
A simple analysis of the effective potential for each spin
species which approximates its shape by a harmonic well at
low energy yields values for the resonance energies very
close to those obtained from the full calculation, allowing
one to anticipate the resonant structure of Tss from the device
dimensions and field parameters. The resonance structure is
also clearly seen in the spin mixing results, T↓↑, as well as in
the corresponding spin ↓ incidence, T↓↓ and T↑↓ �not shown�,
although with some subtle differences due to the asymmetry
introduced by the field.

The calculated conductance and polarization components
for the same parameters as in Fig. 2 are shown in Fig. 3,
shown vs Fermi energy. The SOI naturally causes the spin of
the electron to precess when the electron propagates through
the gated region. This is evident in Fig. 3�a� as the spin-up
conductance G↑↑ is quite different from the spin-down con-
ductance, G↓↓. The inhomogeneous magnetic field also con-
tributes significantly to change the tunneling probability of
the electron through the magnetic gate barrier. G↓↓ exhibits
peaks shifted in general toward lower energy values, in con-
trast with those in G↑↑, a behavior persisting at low energies,
where the two curves show clearly split resonances.18 In ad-
dition, the spin mixing probability of tunneling electrons de-
pends only slightly on the incident spin for a given magnetic
barrier, as illustrated by the curve for G↑↓ being slightly dif-
ferent to G↓↑ �see especially the inset in Fig. 3�a��.

The conductance polarization plotted in Fig. 3�b� shows
that this structure results in polarization over 50% in the first
resonant energy and close to 70% at the second and higher
resonances. Therefore, for realistic values of strip magneti-
zation and spin-obit coupling the system can generate sub-
stantial spin-polarized currents, even as the injection is un-
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FIG. 2. �Color online� The transmission coefficients �a� T↑↑ and
�b� T↓↑ as function of energy and incident angle � for electrons
tunneling through the magnetic barrier with perpendicular magneti-
zation, d=2L0, and SOI coupling �z=0.35�10−11 eV m ���

=0.5�.
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polarized. Notice that the resonant peaks created by the
effective dynamic potential Ve are responsible for the large
polarization values, as the latter decreases rapidly for higher
Fermi energies.

Figure 3�b� also shows the resulting polarization when-
ever the exchange interaction is zero, Jsd=0 �dashed line�, as
it would be the case for the magnetic strip in a nonmagnetic
semiconductor. We can see the same type of resonance-
produced structure in the polarization since the nonvanishing
g factor produces a �small� Zeeman splitting and correspond-
ingly different Ve for the two spins. However, the presence of
exchange greatly enhances the splitting of the resonances for
the two spin species and produces a relatively slowly chang-
ing polarization with Fermi energy �or similarly with total
magnetization value for a fixed energy�. The slow variation
in this dependence for DMS systems would in principle al-
low for more stable and better controlled spin polarization of
the device.

To provide a more complete account of the role of SOI in
this polarization effect we show in Fig. 4 the calculated con-
ductance and polarization as functions of the SOI strength �z

�

at two different Fermi energies. Notice that �z can be varied
in experiments by the application of a gate voltage applied to
the metallic strip itself, as we consider in our calculations.
Figures 4�a� and 4�b� show results for EF=63��. At this
relatively large energy the spin-dependent conductances
show regular oscillations with �z

�, similar to those expected
from the Datta-Das device.5 In this region of SOI the polar-
ization starts near zero �but nonvanishing, due to the Zeeman
effect� and has a local maximum at �z

�=0.45 of no larger
than 3%, becoming slightly negative afterwards. Figures 4�c�
and 4�d� show results for EF=27.3�� near one of the trans-
mission resonances in G↓↓ in Fig. 3. It can be seen that in-
creasing �z

� results also in the spin conductances having os-
cillations. These features reflect the spin precession effects
induced by the SOI, although further enhanced by the reso-
nances of the dynamical potential, as discussed above. No-
tice that in this case, the conductance polarization can exceed
50% and be fully reversed when �z

� changes by �0.20. In

comparison, panel �d� in this figure also shows the polariza-
tion for the same system but for Jsd=0 �dashed line�, at the
position of its corresponding resonance �EF=26.5���. We
see that the much smaller Zeeman splitting results in smaller
amplitude oscillations of the polarization since the spin-up
and spin-down resonances are much closer to each other and
nearly cancel each other out.

As the strong spin polarization of the conductance is as-
sociated with the presence of transmission resonances
through this combination of magnetic and electric-field bar-
rier, we also explore its dependence on strip width—which
determines the width of the effective double barrier potential
Ve. In Fig. 5 we show the spin polarization vs Fermi energy
for different magnitudes of the strip width d �d=L0 to 4L0�.
One can see that increasing d results in a larger width of the
double barrier potential well produced by the effective po-
tential, which in turn results in more resonant peaks in the
conductance as the Fermi energy increases. In all cases, the
polarization exceeds the 50% to 70% range. Notice also that
the smoothness of the polarization transitions, as well as
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their amplitude, is neither optimal for the first few reso-
nances �too sharp� nor for the last few �too small polariza-
tion�, but rather for the middle group. This would suggest the
utilization of different Fermi energies for different strip
widths, in order to maximize the spin polarization and its
control. We should point out that the spin polarization due to
magnetic strips reported earlier11 is produced by quasibound
states that appear preferentially for wider strips. The reso-
nances we study here, however, appear even for narrow
strips, as Fig. 5 shows.

In summary, we have shown that it is possible to achieve
a substantial spin polarization in a realistic situation where a
magnetized strip is placed in close proximity to a 2DEG. Our
calculation incorporates the role of the giant Zeeman effect
in diluted magnetic semiconductors, and this, together with

the tunable SOI coupling, can be appropriately used to en-
hance or suppress the polarization in a controlled fashion.
We should also notice that as the temperature changes, the
effective field can be modulated, with the consequent
changes on the spin polarization characteristics of a given
structure.
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